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I. Introduction

Spatial structures of laser modes in broad-area resonators 
have received much interest for a long time because they give 
a deep insight into pattern formation of natural waves [1–8]. 
Since the Schrödinger equation  has the same mathemati-
cal form as the wave equation [9], many quantum signatures 
have been realized in optical context, such as quantum chaos 
phenomena [10, 11], disorder induced wave localization [12], 
geometric phases [13] and the issue of quantum tunneling 
[14]. Analogous to the particle-wave duality, a fundamental 
duality exists between ray and wave optics. Stationary lasing 
modes with spatial distributions localized on geometric rays 
have been experimentally observed in degenerate spherical 
cavities [15–18]. Furthermore, the representation of quantum 

coherent states has been employed to elucidate the relation-
ship between the geometric modes and Hermite-Gaussian 
(HG) eigenmodes [19].

From the ray-wave duality, it is expected that there are 
time-dependent wave packets with dynamical behaviors cor-
responding to the ray traces in geometric optics. The dynamics 
of photon wave packets inside optical resonators is intimately 
similar to that of quantum wave packets inside mesoscopic 
structures [9]. Time-dependent quantum wave packets localized 
on classical orbits play an indispensable role in the classical-
quantum connection. It has been verified [20, 21] that quantum 
wave-packet coherent states are not only the most representa-
tive states related to the classical dynamics but also the most 
persistent states in the system interacting with the environment 
[22]. Furthermore, quantum wave packets associated with 
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classical orbits are widely used to explore diverse phenom-
ena in solid-state physics, nuclear and atom physics [23–26]. 
Therefore, exploring the time-dependent photon wave pack-
ets in optical resonators can be an important platform in the 
light of mesoscopic phenomena and pattern formation in laser 
physics [9, 27]. In the experimental aspect, the generation of 
photon wave-packet states is associated with the total mode-
locked operation that is the simultaneously longitudinal and 
transverse mode locking in laser resonators [28–30].

The Kerr-lens mode locking has been identified to be an 
extremely simple means of achieving the self-mode-locked 
operation [31]. The fundamental mechanism is to exploit 
the Kerr nonlinearity of the gain medium itself and the soft 
aperture formed by the pumped volume in the gain medium. 
Krausz et al [31] derived a simple criterion to analyze the 
self-starting threshold of the passive mode locking from mode 
beating fluctuations in a free-running solid-state laser. This 
criterion indicates that a decrease in the cavity round-trip time 
can significantly reduce the intensity needed for self-starting 
at a fixed nonlinearity. Recently, the self-mode-locked opera-
tions in short linear cavities have been extensively confirmed 
in the diode-end-pumping approach with Yb-doped [32–35] 
and Nd-doped [36–39] crystal lasers. In addition, the total 
mode locking has been experimentally observed in solid-state 
lasers with the selective pumping to generate the wave packet 
states that mimic the dynamics of optical rays in both space 
and time [40]. Even so, the relationship between the selective 
pumping in a linear cavity and the formation of time-depend-
ent wave packets with ray-wave duality has not been theoreti-
cally explored as yet. This understanding of this relationship 
can provide a deep insight into the manipulation of the gener-
alized wave-packet states in wave systems.

In this work, we theoretically show that the selective pump-
ing can be linked to the generation of the Schrödinger coher-
ent state for the transverse dimensions. On the other hand, the 
effect of spatial hole burning (SHB) is considered to develop 
a theoretical formula for analyzing the maximum number of 
longitudinal lasing modes in end-pumped lasers. We further 
combine the generation of the multi-transverse and multi-lon-
gitudinal modes to derive an analytical wave representation for 
expressing the time-dependent wave-packet state. The derived 
wave function can be exploited to obtain the parametric for-
mula for the periodic trajectories in spherical cavities to reveal 
the subtle relationship between the hyperbolic caustics and lin-
ear rays. Moreover, the emission of the time-dependent wave-
packet state from the output coupler can be shown to exhibit the 
characteristics of multiple Gaussian beams. By using the para-
metric formula and the developed wave function, the temporal 
dynamics of the multiple Gaussian beams can be numerically 
manifested. Finally, an experiment based on the diode-pumped 
solid-state laser is performed to obtain the total mode-locked 
operation for making a comparison with theoretical analysis.

II. Selective pumping and spatial hole burning

Without loss of generality, we consider the spherical cavity 
formed by a concave mirror with radius of curvature R at 

z L= −  and a flat mirror at z 0= . The wave function of eigen-
modes in a concave-flat cavity is given by [41] 
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where the transverse distribution x y z, ,n m, ( )ψ  is the Hermite-
Gaussian mode:
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is the beam radius at the waist, π λ=z w /R 0
2  is the Rayleigh range, 

ℓkn m, ,  is the eigenvalue of the wave number, ℓ ℓω = ckn m n m, , , ,  
is the eigen-frequency, ℓ is the longitudinal mode index, n and 
m are the transverse mode indices, and z z ztan /G R

1( ) ( )θ = −  is 
the Gouy phase. For a concave-flat solid-state laser, the lon-
gitudinal and transverse mode separations are respectively 
given by ΩL  =  c/2L and ΩT  =  (ΩL/π)cos−1[1  −  (L*/R)]1/2, 
where L  =  Lc  +  (nr  −  1)Lg, L*  =  Lc  +  [(1/nr)  −  1]Lg, Lc 
is the geometrical length of the cavity, Lg is the length of 
the gain material, and nr is the refractive index of the gain 
medium. In terms of LΩ  and TΩ , the eigenvalue ℓkn m, ,  is given 
by ( ) [ ℓ ( ) ( )]ℓ π= + + + Ω Ωk L n m/ 1 /n m T L, , . The eigen-
mode in equation (1) can be divided into two waves traveling 
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Here t L c2 /r =  is the round trip time of light within the cavity. 

The components of ℓ
( )Φ +n m, ,  and n m, ,ℓ

( )Φ −  denote the waves travel-
ing backward and forward in the cavity, respectively.

The criterion for the self-starting derived by Krausz et al 
[31] is given by P t t N/ lni r cth( ) [ ( )]κ > , where κ is a charac-
teristic of the Kerr nonlinearity used for passive mode lock-
ing, Pi is the circulating average intracavity power in the free 
running laser, N is the number of longitudinal lasing modes, 
tr is the cavity round-trip time, and tc is effective correlation 
time between the longitudinal modes in the free-running laser. 
It has been experimentally confirmed [32–39] that combin-
ing the Kerr nonlinearity of the laser crystal with the high-Q 
short cavity can directly lead to the phase locking between the 
excited modes. As a result, the general representation for the 
phase-locked states in a standing-wave cavity can be expressed 
as a sum of two traveling waves: / 2[ ]( ) ( )Ψ = Ψ + Ψ+ − , where
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an m,  is the amplitude coefficient for the transverse order n and 
m, ℓc  is the amplitude coefficient for the longitudinal order ℓ, 
the index ℓo indicates the minimum longitudinal order, and the 
integer N represents the total number of longitudinal eigen-
modes in the lasing mode. It has been shown [42] that the 
coefficient an m,  is mainly controlled by the transverse overlap 
between the cavity mode x y z, ,n m, ( )ψ  and the transverse distri-
bution of the pump source F x y,( ), i.e.

a x y z F x y x y, , , d dn m n m c, ,∬ ( ) ( )ψ= (7)

where zc is the location of the gain medium. For the end-pump-
ing scheme, as shown in figure 1, the pump source F x y,( ) is 
assumed to a Gaussian distribution to derive a closed form 
for manifestation. Considering a selective pumping with the 
transverse displacements x∆  and y∆  in the x- and y-directions, 
the pump distribution F x y,( ) can be modeled as [42] 
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Substituting equations (2) and (8) into equation (7) and using 
the generating function of the Hermite polynomials, the coef-
ficient an m,  can be derived as [43] 
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where n x w z/o c
2[ ( )]= ∆  and m y w z/o c

2[ ( )]= ∆ . Note that the 
values of the parameters no and mo signify the magnitudes of 
the off-axis displacements in the x- and y- directions, respec-
tively. Equation (9) also indicates that the maximum contribu-
tion in the lasing mode comes from the eigenmode with the 
transverse indices n and m to be closest to the values no and 
mo, respectively. For convenience, we take the parameters no 
and mo to be the integers closest to the values of x w z/ c

2[ ( )]∆  
and y w z/ c

2[ ( )]∆ , respectively. Moreover, the expression in the 
square bracket of the equation (9) is just the form of the square 
root of the Poisson distribution.

With respect to the propagation along Oz axis of the res-
onator, we consider the SHB effect to explore the operation 
of the multiple longitudinal modes in a standing-wave cavity 
[44–49]. It is essentially confirmed that the stronger the SHB 

effect, the more the longitudinal lasing modes. In the end-
pumping scheme, the strength of the SHB effect is primarily 
related to the separation d between the gain medium and the 
input mirror. Although the SHB effect has been widely dis-
cussed, here we originally derive an analytical formula to man-
ifest the maximum number of longitudinal lasing modes as a 
function of the pump level and the crystal/mirror separation d. 
To derive the analytical formula, the variable z is changed into 
a new variable z z L= +′  to consider the round-trip gain of 
the Nth longitudinal lasing mode. For a gain medium located 
between z d=′  and z d Lg= +′ , the round-trip gain of the Nth 
longitudinal mode can be expressed as [50] 
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where σ is the stimulated emission cross section, Pabs is the 
absorbed pump power, pω�  is the pump photon energy, τ is the 
spontaneous emission lifetime, G z N;res( )′  is the residual gain 
distribution of the Nth longitudinal lasing mode, and H z( )′  is 
the longitudinal distribution of the normalized pump intensity. 
In terms of g N d P, , th( ), the gain-to-loss ratio for the Nth longi-
tudinal mode is given by
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where R is the reflectivity of the output coupler, γ is the other 
round-trip loss, and the threshold pump power Pth is
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For a gain medium near the input mirror, the residual gain 
distribution ( )′G z N;res  can be approximated as [50] 
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Using the Beer–Lambert law, the normalized pump intensity 
H z( )′  is given by

H z
e

1 e

z d

Lg
( )

( )α
=

−
′

α

α

− −

−

′

 (14)

Figure 1. Experimental setup for the total mode-locked operation in a concave-flat cavity with the off-axis pumping scheme.
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where α is the absorption coefficient at the pump wavelength. 
Substituting equations  (13) and (14) into equation  (11) and 
using Lgλ<< , the gain-to-loss ratio for the Nth longitudinal 
mode can be approximately derived as an analytical form:
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The maximum number of longitudinal lasing modes Nmax can 
then be determined by the condition that the maximum value 
of N can lead to g N d P, , abs( ) ⩾ Rln 1/( ) γ+ . Namely,
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From equations (15) and (16), it can be found that Nmax is a 
function of the pump level P P/abs th and the crystal/mirror sepa-
ration d for a given absorption coefficient α, crystal length Lg, 
and cavity length Lc.

To reveal the dependence of Nmax on P P/abs th and d, we per-
formed a numerical calculation for a typical case of a diode-
pumped Nd:YVO4 laser in which 0.5 mm 1α = − , L 6 mmg = , 
and L 30 mmc = . Calculated results are shown figure 2. The 
dependence of the maximum longitudinal mode number Nmax 
on the pump level P P/abs th can be obviously seen to display a 
staircase form. Furthermore, it is clear that a smaller the crys-
tal/mirror separation d can lead to more longitudinal modes 
to get lasing.

III. Representation of wave packet states

To obtain an analytical wave representation for manifest-
ing the wave packet dynamics, the relative amplitude for the 

coefficient cℓ is modeled as the binomial distribution. Using a 
new index j oℓ ℓ= −  for concise expression, the amplitude 
coefficient cj is given by

c
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where the factor 1/2N 1−  is included for normalizing the wave 
function. Substituting equations (9) and (17) into equation (6) 
and using the property of the Schrödinger coherent state, the 
wave functions x y z t, , ,( )( )Ψ ±  can be deduced as
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where the phase factor x y z t, , ,( )( )Θ± �� �  is given by
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(19)

Even though the phase factor x y z t, , ,( )( )Θ± �� �  in equation (19) 
is somewhat complicated, the genuine behavior of the 

Figure 2. Calculated results for the dependence of Nmax on the pump level P P/abs th and the mirror/crystal separation d for a typical case of a 
diode-pumped Nd:YVO4 laser with α = 0.5 mm-1, =L 6 mmg , and =L 30 mmc .
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wave-packet intensity x y z t, , ,
2( )Ψ  is nearly independent of 

this factor.
Since the interference between backward ( )Ψ +  and forward 

( )Ψ −  components only occurs near the reflection mirrors of the 

cavity, the intensity of the wave-packet state ( )=|Ψ |I x y z t, , , 2 

can be approximately expressed as I I I /2[ ]( ) ( )= ++ − , where
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The analytical form in equation  (20) can straightforwardly 
be exploited to establish the connection between the wave-
packet state and the periodic ray orbit. First of all, when the 
total number of longitudinal modes is fairly greater than 

one, i.e. �N 1, the term z tcos , /2L

N2 1
[ ( ( ) ) ]( ) ( )

θ ±
−

�  in equa-

tion (20) leads the intensity of the wave packet to exhibit the 
maxima at z t s, 2L ( )( )θ π=± �  for any integers s. Substituting 

z t s, 2L ( )( )θ π=± �  into equation (4) yields t s t z c/r ( )= ∓ � . This 
result indicates that the center of the wave packet x y z t, , ,( )( )Ψ ±  
in space time z t,( )�  inside the cavity periodically returns to the 
same position z� with a time period of tr. When the ratio /T LΩ Ω  
is a simple fraction P Q/  with P and Q to be co-prime integers, 
the ray tracing can be used to show that a ray returns exactly 
to its original position and direction after Q round trips in the 
cavity and can retrace the same ray pattern to form a closed 
ray path. Substituting z t s, 2L ( )( )θ π=± �  into equation  (5) for 
the cavity with P Q/ /T LΩ Ω = , the time-averaged intensity 

of the wave-packet state I x y z t, , ,
2( )= Ψ  in equation  (20) 

can be deduced to be localized on the spatial distribution 
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(21)

Equation (21) reveals that the spatial distribution I x y z, ,c( ) of 
the wave-packet state can be divided into Q parts of backward 
and forward Gaussian beams. Figure 3 shows the  calculated 
results for the case of the concave-flat resonator with 
P Q, 2, 7( ) ( )= , n 0o = , m 50o = , and R 30=  mm. Note that 

the cavity length and the Rayleigh range can be determined 
by substituting the values of P Q,( ) and R into the equations of 
L R P Q n n Lsin / 1/r r g

2( ) [ ( )]π= + −  and z L P Q/tan /R ( )π= , 
respectively. The upper row in figure 3 depicts the transverse 
patterns for the spatial distribution I x y z, ,c( ) at different six 
longitudinal positions inside the cavity. It can be seen that the 
variation of the transverse patterns on the longitudinal posi-
tions agrees very well with the periodic ray orbit shown in the 
lower row in figure 3.

The correspondence between the periodic ray orbit and 
the spatial distribution I x y z, ,c( ) of the wave-packet state can 
be more explicitly developed by substituting x x w z2 / ( )=�  
and y y w z2 / ( )=�  into equation (21). As a consequence, the 
mathematical parametric form for the central maxima of back-
ward and forward Gaussian beams in equation  (21) can be 
expressed as

Figure 3. Upper row: numerical transverse patterns for the spatial distribution ( )I x y z, ,c  at six different longitudinal positions inside the 
concave-flat resonator with ( ) ( )=P Q, 2, 7 , =n 0o , =m 50o , and =R 30 mm. Lower row: periodic ray orbit in geometric optics.
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with s Q0, 1, ....., 1= − . Even though the transverse beam width 

in equation  (22) is proportional to w z w z z1 / R0
2( ) ( )= + , 

the Q-piece trajectories of the periodic ray orbit can be veri-
fied to be the straight lines by substituting the Gouy phase 

z z ztan /G R
1( ) ( )θ = −  into equation (22). With some algebra, the 

parametric form for the ray trajectories in equation (22) can be 
rewritten as
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Equation (23) clearly reveals that the periodic ray orbit com-
prises Q-pieces straight lines. Figure 4 depicts a case of the 

periodic orbit in the cavity with P Q, 8, 21( ) ( )= , n 0o = , and 
m 50o =  to manifest the subtle connection between hyper-
bolic caustics and linear trajectories. It is worthwhile to men-
tion that equations  (22) and (23) clearly display the role of 
the Gouy phase in the ray-wave correspondence for the time-
dependent wave-packet state in the spherical cavity.

The forward component I x y z t, , ,( )( )−  in equation  (21) 
can be used to represent the spatio-temporal dynamics of the 
wave-packet lasing mode emitted from the output coupler. In 
spatial domain, the output emission with P Q/ /T LΩ Ω =  dis-
plays a feature of Q multiple Gaussian beams. The tempo-
ral dynamics for each far-field Gaussian beam with the index 
s Q0, 1, ....., 1= −  can be derived by substituting the central 
maxima of equation (22) into equation (20) to yield
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Figure 4. A periodic orbit in the yz plane for the cavity with ( ) ( )=P Q, 8, 21 , =n 0o , and =m 50o .

Figure 5. Experimental data for the average output power versus the incident pump power, the inset: the numerical calculation for the 
intensity of the lasing mode inside the cavity and the propagation of emission.
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In the following, the present theoretical formula is exploited to 
analyze the experimental results of the total mode-locked states.

IV. Experimental results and numerical analysis

The experimental setup for the total mode-locked opera-
tion is a concave-flat cavity with the off-axis pumping 
scheme, as shown in figure 1. The gain medium is a-cut 0.2 
at.% Nd:YVO4 crystal with a length of 8 mm. The choice 
of Nd:YVO4 as medium for laser emission experiments is 
based on the fact that the YVO4 crystal has a large third-
order nonlinearity for an efficiently self-mode-locked opera-
tion [36, 38]. The Nd:YVO4 crystal was coated on both 
end surfaces to be antireflective at 1064 nm (R  <  0.2%). 
Besides, both ends of the laser crystal were wedged 2° to 
suppress the Fabry–Perot etalon effect. The laser crystal was 
wrapped with indium foil and mounted in a water-cooled 

copper holder to ensure stable laser output. The front mir-
ror was a 30 mm radius-of-curvature concave mirror with 
antireflection coating at 808 nm on the entrance face and 
with high-reflectance coating at 1064 nm (>99.8%) and high 
transmittance coating (T  >  95%) at 808 nm on the second 
surface. The distance between the laser crystal and the front 
mirror was approximately 2–3 mm. The output coupler was a 
wedged flat mirror with a reflectivity of 95% at 1064 nm. The 
pump source was a 3.0 W 808 nm fiber-coupled laser diode 
with a core diameter of 100 μm and a numerical aperture of 
0.16. A lens with a 25 mm focal length was used to focus the 
pump beam into the laser crystal. The average pump size was 
approximately 70 μm.

When the optical cavity length L was adjusted to be 
approximately 32.1 mm, experimental results revealed that a 
2D mode-locked state with P Q, 2, 7( ) ( )=  could be obtained 
by using an off-axis displacement 0.4 mm along the y direc-
tion. Figure 5 depicts experimental data for the average output 

Figure 6. Upper: experimental transverse patterns measured at the different longitudinal positions of the cavity. Lower: theoretical 
transverse patterns calculated with equation (21) and the parameters ( ) ( )=P Q, 2, 7 , =n 0o , =m 300o , and =R 30 mm.

Figure 7. Experimental results for the pulse trains of seven Gaussian spots in the far-field pattern. Theoretical analysis obtained with 
equation (24) and the parameters are the same as used in figure 6.
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power versus the incident pump power. The inset of figure 5 
shows the numerical calculation for the intensity of the lasing 
mode inside the cavity and the propagation of emission. At 
an incident pump power of 3.0 W, the average output power 
was measured to be approximately 600 mW. Figure 6 shows 
experimental transverse patterns measured at the different 
longitudinal positions of the cavity. Theoretical z-dependent 
transverse patterns calculated with equation  (21) and the 
parameters P Q, 2, 7( ) ( )= , n 0o = , m 300o = , and R 30=  mm  
are also shown in figure 6. It is clear that numerical results 
agree very well with experimental data.

The far-field pattern of the simultaneously longitudinal 
and transverse mode-locked laser displays a characteristic 
of multiple Gaussian spots. We used two high-speed InGaAs 
photodetectors (Electro-optics Technology Inc. ET-3500 with 
rise time 35 ps) to identify the time sequence of the mode-
locked pulse train via the relative measurement. The first pho-
todetector was employed to measure the temporal behavior 
in one fixed spot of the far-field pattern for reference. The 
second photodetector was used to measure the temporal sig-
nals in different spots of the far-field pattern for comparison. 
The output signals of the photodetectors were connected to a 
digital oscilloscope (Agilent DSO 80000) with 10 GHz elec-
trical bandwidth and a sampling interval of 25 ps. Figure  7 
shows the experimental results for the pulse trains of seven 
Gaussian spots in the far-field pattern. It can be seen that the 
relative shifts of the time sequences between different spots 
are wholly consistent with the dynamics of the wave packet 
traveling along the geometric trajectories inside the cavity. 
There are some tiny satellite pulses that might come from the 
presence of the side modes. For comparison, equation  (24) 
is used to calculate the temporal dynamics of the far-field 
Gaussian beams, where the parameters are the same values 
adopted in figure 6, the number of longitudinal modes is set to 
be N 8=  from the information of the lasing spectrum, and the 
distance for the measurement is z L28= . Once again, numeri-
cal results agree very well with experimental data. The good 
agreement between experimental results and theoretical pat-
terns confirms the physical analysis for the total mode-locked 
state.

V. Conclusions

In summary, the formation of optical wave packet states in 
the laser resonator has been fully explored by considering the 
selective pumping and the SHB effect to manifest the time-
dependent ray-wave duality. It is theoretically verified that the 
selective off-axis pumping can excite the transverse modes to 
be similar to the coherent states of quantum harmonic oscil-
lators. Furthermore, a theoretical formula associated with 
the SHB effect is derived to analyze the number of the lon-
gitudinal lasing modes. By using the determined longitudinal 
and transverse eigenmodes, the wave function for the total 
mode-locked state can be analytically derived. The analytical 
wave function is further used to extract the parametric for-
mula for the periodic trajectories that reveal the subtle rela-
tionship between the hyperbolic caustics and linear rays. The 

parametric formula and the derived wave function are com-
bined to obtain the temporal dynamics for the output emission 
of the total mode-locked state. Moreover, a diode-pumped 
solid-state laser is employed to generate the total mode-locked 
state. Experimental results are generally found to be in good 
agreement with numerical analysis based on the derived wave 
function.

This work is supported by the Ministry of Science and 
Technology of Taiwan (Contract No. MOST-103-2112-M- 
009-016-MY3).
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